DASL UAV Antenna Gimbal

Hardware Review 2

Kalli Albright Kaitlyn Barr Dustin Branges Daniel Johnson

2017-2018

Summary of Hardware Review 2:

Since Hardware Review 1, Team D1 has purchased a new motor, completed several part redesigns for their device, printed all necessary components, finished coding, assembled their system, and created a testing apparatus. In addition to this, the team has also completed several class related assignments, such as analytical analyses, a presentation, report, and update their website. The fully assembled and operational device is displayed in Figure 1, with the major components of the system labeled.

Figure 1: Final Assembly of Antenna Gimbal

Once mounted on the Unmanned Aerial Vehicle (UAV), provided by the Dynamic and Active Systems Lab (DASL), the antenna will remain in the horizontal position as seen in Figure 2. Once the user provides an input, commanding the gimbal to sweep the antenna or hold a specific angle, the device will lower it to the correct position as demonstrated in Figure 3.



Figure 2: Antenna Gimbal in Horizontal Position

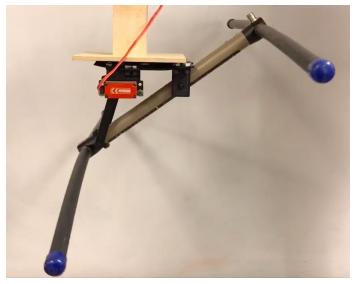


FIgure 3: Antenna Gimbal in Fixed Angle Position

Previous Action Items Completed:

The team is currently on track for their project. Table 2 shows the action items completed between Hardware Review 1 and Hardware Review 2, and which team member(s) completed them. Through these action items, the team was able to fully assemble and complete their device.

Action Item	Completed By	
Fully program the arduino	Kaitlyn Barr	
Create working arduino setup (hardware)	Kaitlyn Barr and Dustin Branges	
Redesign shaft to fit newly selected motor	Daniel Johnson	
Update all drawings for any modified parts	Daniel Johnson	
Build test apparatus	Kailyn Barr and Kalli Albright	
Design holster for antenna	Daniel Johnson and Kalli Albright	
Print new/modified parts	Daniel Johnson and Dustin Branges	
Assemble full system	All	
Plan testing procedures	Kalli Albright and Kaitlyn Barr	
Update website	Dustin Branges	
Individual Analytical Analysis	All	

Register for U-Grads	Kaitlyn Barr	
Create Midpoint Presentation Outline	Kalli Albright	
Finish Midpoint Presentation	Kalli Albright and Kaitlyn Barr	
Rehearse Midpoint Presentation	All	
Finish Midpoint Report	All	
Mount Arduino	Kaitlyn Barr and Dustin Branges	
Print Replacement Parts	Daniel Johnson and Dustin Branges	
Calibrate Servo	Kaitlyn Barr	

Upcoming Action Items:

Since the team's device is fully complete, there are no further tasks to prepare for final product testing proof. Therefore, the only tasks to be completed for the testing are provided in Table 3, along with which team member(s) are incharge of each test.

Table 3: Testing Tasks

Test	Procedure	Requirement	Responsible Member
Size	Measure surface area of system with ruler	≤ 15 in.²	Daniel Johnson
Weight	Weigh all components of the system with scale	≤ 0.5 lbs.	Dustin Branges
Angle	Measure maximum angle with protractor	≥45°	Daniel Johnson
Modes	Note the number of user modes	≥ 2	Kaitlyn Barr
Communication	Note the rate of serial communication	= 9600 Baud	Kaitlyn Barr
Power Input	Measure power input with multimeter	≤ 5 V	Dustin Branges
Cost	Calculate total cost	≤ \$500	Kalli Albright

Linkages	Count number of linkages	≤ 4	Kalli Albright
Installation Time	Using stop watch, time how long it takes to fully assemble	≤ 1 hour	All